THE EFFECT OF DIETARY E VITAMIN ON FATTY ACID COMPOSITION AND LIPID OXIDATIVE STABILITY IN PIGS: A REVIEW

Okrouhľa M., Stupka R., Čítek J., Šprysl M.

Czech University of Life Sciences, Prague, Czech Republic

Abstract

The pork meat is the most frequently consumed meat in the Czech Republic. The quality of pork meat mainly depends on the genotype, age, slaughter weight and nutrition in pigs. Lipid oxidation in meat is an important responsible factor for quality losses including flavour, texture, nutritive value and colour. Dietary vitamin E has positive effect on oxidative stability of fresh and stored meat and products.

Key Words: Pig; vitamin E; fatty acid; oxidative stability

Pork meat is an important part of the European diet as well as in the Czech Republic. Pork consumption remains on high level on long term basis. For many consumers, pork meat is often controversial concerned of an excess of fat, saturated fatty acids and cholesterol. However, several studies documented that pork meat is a valuable source of polyunsaturated fatty acids (PUFA) with an important concentration of n-6/n-3 fatty acids (Cameron and Enser, 1991, Morgan et al., 1992, Enser et al., 1996). The composition of pork, respectively its fatty acid content, mainly depends on the genotype, age, slaughter weight and nutrition in pigs (Hernández et al., 1998). There are many reports concerning of the benefits of vitamin E supplementation the diets for fattening pigs (Cheah et al. 1995, Canon et al. 1996, Jensen et al. 1997, 1998). Although vitamin E is known as an essential nutrient for reproduction since 1922, we are far from understanding the mechanism of its physiological functions till now. Vitamin E is part of tocopherols and tocotrienols, from which α-tocopherol has the highest biological activity (Brigelius-Flohé and Traber, 1999) and is the main lipid-soluble antioxidant in the body. As antioxidant it prevents the free radical multiplications in the cell membranes. Also, vitamin E shows pro-oxidant activity (Herrera and Barbas, 2001). It is known that metabolic function of the vitamin E is related to hormone metabolism and membrane antioxidant (Voet and Voet, 1990). The recommended daily level of dietary α-tocopheryl acetate supplementation in growing pigs is 15-40 mg/kg (Albers et al., 1984), however, certain parameters of meat quality, respectively oxidative stability, can be improved when dietary α-tocopheryl acetate levels are 200-500 mg/kg in the diet (Buckley et al., 1995, Cheah et al., 1995, Lauridsen et al., 1999, Lahučky et al., 2001). Daza et al. (2005) also studied the effect of feeding of the α-tocopheryl acetate (40 vs. 200 mg/kg) on antioxidant accumulations and oxidative stability in Iberian pigs. They founded that the level of vitamin E has no influence on muscle lipid profile (neutral and polar lipids). These results are in agreement with López-Bote et al. (2002). Also Monahan et al. (1992) concluded that dietary α-tocopheryl acetate supplementation did not influence the deposition of fatty acids in the muscle but dietary α-tocopheryl acetate supplementation (200 mg/kg feed) increased significantly the oxidative stability of muscle given especially by oleic acid concentrations in polar lipids, as mentioned Rey et al. (2001). Lipid oxidation, a major cause of meat quality deterioration, results with autoxidation products of unsaturated fatty acids which affected desired and nutritional value (Pearson et al., 1983). Lipid oxidation in meat is an important responsible factor for quality losses including flavour, texture, nutritive value and colour. This oxidation causes free radicals in meat but also with different pro-oxidants (Kanner, 1994). Post-slaughter biochemical changes involve the conversion of the muscle to meat which causes the loss of cellular antioxidant defence and increasing sensibility of meat lipids to oxidation (Morrissey et al., 1994). However, the presence of polyunsaturated fatty acids (PUFA) in the diets in pigs increases the risk for lipid-oxidation in the living organism and in the carcass (Jakobsen, 1995). Oxidation of unsaturated fatty acids in the cell membranes leads to disruption of normal membrane structure and function (Storey, 1996). It is generally accepted that the oxidative stability of muscle lipids depends on the α-tocopherol concentration presented in the tissue (Sheldon et al., 1997), which depends on the α-tocopherol acetate concentration in the feed (Wen et al., 1997). Vitamin E and antioxidant enzymes, such superoxide dismutase and glutathione peroxidase presented in the skeletal muscle, are able to inhibit the lipid oxidation in the living tissue and in the muscle as a food. The amount of α-tocopherol, deposited in the muscle tissue, depends on the fiber type distribution and its metabolic characteristics.
During the *pos mortem* metabolism of muscles, which differ among muscle types, the process of lipid oxidation may no longer be tightly controlled due to the weakness of the antioxidative defense system. This may affect the freshness of pork meat quality (Lauridsen et al., 1999). Jensen et al. (1998) found that dietary α-tocopherol acetate supplementation was effective for reducing lipid oxidation in meat. The favourable effect of dietary supplementation of vitamin E on certain aspects of meat quality in red and white meat was reported by various studies. The stability of lipids and colour in beef (Faustman et al., 1989, Arnold et al., 1993), pork (Monahan et al., 1992), turkey (Sante and Lacourt, 1994), broilers during refrigeration and deep-freezing (Coetzee and Hoffman, 2001), reduction of drip losses of pork (Asghar et al., 1991) is achieved by supplementation of the dietary vitamin E. The stability and improvement in meat colour by vitamin E was principally due to its ability to prevent the oxidation of myoglobin and/or oxymyoglobin to metmyoglobin (Mitsumoto et al., 1993). Houben et al. (1998) studied the effect of supplementation of vitamin E (200 IU/kg feed) in the diet of pigs on colour stability and lipid oxidation in minced pork. They found that the meat from vitamin E-supplemented animals was relatively resistant to oxidation, even at the increased O₂ concentrations prevailing in the gas packages, oxygen concentrations which clearly induced lipid oxidation in the control meat. The protective effect of vitamin E on lipid stability in fish (Fang and Wada, 1993), chicken (Lin et al., 1989), turkey (Higgins et al., 1998) veal (Engeseth et al., 1993), beef (Mitsumoto et al., 1993), pig (Lauridsen et al., 1999, Daza et al., 2005, Lahučký et al., 2005) and cooked pork (Monahan et al., 1992) was the attribute of the significant reduction in the rate of lipids oxidation. Dietary supplementation of approximately 20 times of normal requirements of vitamin E could also inhibit the enhanced lipid peroxidation, reduce the plasma creatine kinase and pyruvate kinase activities and prevent the antioxidant abnormality of hepatic microsomes in stress-susceptible pigs (Duthie et al., 1989, 1992; Duthie and Arthur, 1993). Buckley et al. (1995), Asghar et al. (1991) focused on the antioxidant function of vitamin E and its influence on lipid peroxidation activity and colour stability, water-holding capacity, and cholesterol oxidation in meat. However, a little attention was attended to the effects of dietary enrichment with vitamin E on the quality of cured products, or to the effects of illumination in combination with commercial low-oxygen packaging during the display of sliced products. Vitamin E has an effect on oxidative stability of fresh meat but also treated meat (packed with low-oxygen, chill-stored, cooked and frozen meat). Lahučký et al. (2005) studied the effect of dietary vitamin E on the antioxidative status and meat quality pigs. They found that the positive effects of vitamin E on oxidative stability, measured as thiobarbituric acid reactive substances (TBARS, MDA), were observed mainly in chill-stored meat (*P*<0.05). It confirmed that oxidative stability of meat lipids can be improved by vitamin E supplementation into the feed. Also Kerry et al. (1998) confirmed that dietary vitamin E supplementation is very effective for inhibiting lipid oxidation and it is much less susceptible to warmed-over flavour development than any other treatment. Studies concerning of vacuum-packed ham (Houben and Gerris, 1998), low-oxygen modified atmosphere of packaged ham (Houben and Gerris, 1998), minced pork (Houben et al., 1998) and cured pork sausage (Zanardi et al., 2000) show a limiting ability of vitamin E supplementation to improve the color stability of the product.

References

Research was sponsored by the CMEPt No. 6046070901